Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834632

RESUMO

Flavonoids are favored compounds in plant responses to UV exposure and act in UV absorption and antioxidant activity. Here, it was investigated, with okra as a model species, how fast plants can react to changing UV conditions and to what extent these reactions take place. Okra (Abelmoschus esculentus) plants were exposed to either full or nearly no UV radiation. The diurnal rhythm of the plants was driven by the UV radiation and showed up to a 50% increase of the flavonoid content (measured optically in the +UV plants). This was reflected only in the trends in UV-absorption and antioxidant activity of the extracts but not in the soluble flavonoid glycosides and hydroxycinnamic acid derivatives. In a second experiment, a transfer from a -UV to a +UV condition at 9:00 CDT showed the immediate start of the diurnal rhythm, while this did not occur if the transfer occurred later in the day; these plants only started a diurnal rhythm the following day. After an adaptation period of seven days, clear differences between the +UV and -UV plants could be found in all parameters, whereas plants transferred to the opposite UV condition settle between the +UV and -UV plants in all parameters. Broadly, it can be seen that the flavonoid contents and associated functions in the plant are subject to considerable changes within one day and within several days due to the UV conditions and that this can have a considerable impact on the quality of plant foods.

2.
Physiol Plant ; 173(3): 725-735, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34375003

RESUMO

The accumulation of soluble and cell-wall bound UV-absorbing compounds (i.e., flavonoids) in the epidermis and the mesophyll of leaves is a response of plants to UV exposure. These compounds are known to function in UV screening, but they are also of potential value for food quality. One way to non-destructively monitor UV screening in leaves is by optical methods, from which UVA-PAM and Dualex instruments stand out. The degree and rapidity to which plants can modulate UV screening in response to fluctuating solar UV conditions is poorly understood. In this study, okra plants were exposed to two solar radiation treatments (near-ambient UV [+UV] and attenuated UV [-UV]) and the epidermal UV transmittance (TUV ; UVA-PAM) and flavonoid index (Dualex) were measured in the youngest and second youngest mature leaves over three consecutive days and within an individual day. The day-to-day (measured near solar noon) and diurnal (over the course of a day) measurements of leaf optical properties indicated that TUV decreased and flavonoid index increased in the adaxial epidermis ~50% until 15:00 CDT then returned close to morning values later in the day. Correlations between UV-B radiation and TUV and flavonoid index revealed highest values 30 min to 1 h prior to the measurements. These findings indicate that plants can respond quickly to fluctuating solar UV conditions and underlines the importance of the harvest-time point for health-promoting compounds in fruit and vegetables. Our findings also indicate that the UVA-PAM and the Dualex instruments are both suitable instruments to monitor rapid changes in UV screening in plants.


Assuntos
Protetores Solares , Raios Ultravioleta , Epiderme , Epiderme Vegetal , Folhas de Planta , Luz Solar
3.
Photochem Photobiol Sci ; 18(7): 1685-1699, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31166333

RESUMO

The UVR8 photoreceptor in Arabidopsis thaliana is specific for ultraviolet-B (UV-B; 280-315 nm) radiation and its activation leads to a number of UV-B acclimation responses, including the accumulation of flavonoids. UVR8 participates in a signaling cascade involving COP1 and HY5 so that the absence of any of these components results in a reduction in the ability of a plant to accumulate flavonoids in response to UV; Cop1 mutants show high dropouts and hy5-ks50 hyh double mutants show very low levels of flavonoids. The predominant phenolics in Arabidopsis thaliana are sinapic acid derivatives as well as non-aclyated quercetin and kaempferol di- and triglycosides containing glucose and rhamnose as glycosylated sugar moieties. How this flavonoid profile in Arabidopsis thaliana is affected by UV radiation, how rapidly these changes occur in changing UV conditions, and which components of the UV-B signalling pathway are involved in rapid UV acclimatization reactions is poorly understood. In the present study, we examined these questions by characterizing the flavonoid profiles of Arabidopsis thaliana signalling mutants and wild types grown under different UV levels of constant UV-B+PAR ratios and then transferring a subset of plants to alternate UV conditions. Results indicate that flavonoid accumulation in Arabidopsis thaliana is triggered by UV and this response is amplified by higher levels of UV but not by all compounds to the same extent. The catechol structure in quercetin seems to be less important than the glycosylation pattern, e.g. having 2 rhamnose moieties in determining responsivity. At low UV+PAR intensities the introduction of UV leads to an initial tendency of increase of flavonoids in the wild types that was detected after 3 days. It took 7 days for these changes to be detected in plants grown under high UV+PAR intensities suggesting a priming of PAR. Thus, the flavonoid profile in Arabidopsis thaliana is altered over time following exposure to UV and PAR, but the functional significance of these changes is currently unclear.


Assuntos
Arabidopsis/efeitos da radiação , Flavonoides/metabolismo , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatografia Líquida de Alta Pressão , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Flavonoides/análise , Mutagênese , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Oecologia ; 181(1): 55-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26809621

RESUMO

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.


Assuntos
Aclimatação , Flavonoides/metabolismo , Fenóis/metabolismo , Epiderme Vegetal/metabolismo , Plantas/metabolismo , Raios Ultravioleta , Clima , Mudança Climática , Ozônio , Propanóis/metabolismo , Especificidade da Espécie , Luz Solar , Protetores Solares , Temperatura , Estados Unidos
5.
Plant Cell Environ ; 39(1): 222-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26177782

RESUMO

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments.


Assuntos
Abelmoschus/efeitos da radiação , Flavonoides/efeitos da radiação , Hibiscus/efeitos da radiação , Solanum lycopersicum/efeitos da radiação , Vicia faba/efeitos da radiação , Zea mays/efeitos da radiação , Abelmoschus/fisiologia , Aclimatação , Ritmo Circadiano , Flavonoides/fisiologia , Hibiscus/fisiologia , Solanum lycopersicum/fisiologia , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Luz Solar , Raios Ultravioleta , Vicia faba/fisiologia , Zea mays/fisiologia
6.
Plant Physiol Biochem ; 93: 94-100, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25465528

RESUMO

The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.


Assuntos
Aclimatação/efeitos da radiação , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Raios Ultravioleta , Aclimatação/genética , Epiderme Vegetal/genética , Folhas de Planta/genética , Fenômenos Fisiológicos Vegetais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...